
<Paper No.>/1

The Hungarian ClusterGrid Project: Challenges of a
Production Grid

Tamás Máray1, Péter Stefán1, Ferenc Szalai1,2, Gábor Vitéz1
1Office for National Information and Infrastructure Development NIIF/HUNGARNET

Victor Hugo 18-22, H-1132 Budapest
2Research Institute of Solid State Physics and Optics

Hungarian Academy of Sciences
P.O.Box 49, H-1525 Budapest

Hungary
E-mail: grid-tech@niif.hu

Abstract - The paper aims at providing brief
architecture overview of the Hungarian ClusterGrid, a
production grid since September, 2002, as well as gives
some key features that distinguish it from traditionally
built grid systems, such as the use of private computer
networking, intelligent resource brokering,
dynamically mapped task execution environment, and
a “one-job corresponding to one-directory structure”
environment. The paper concludes operation
experience and production grid service organizational
models.

Key-Words - grid, cluster, high-performance

computing, supercomputing

1 Introduction
The initiation of the Hungarian ClusterGrid

Infrastructure project dates back to July, 2002, when the
Hungarian Ministry of Education donated 2000 PCs at
national universities, polytechnics and public libraries.
The PC labs involved were considered to satisfy two
criteria: on one hand the labs were intended to support
education and training tasks during the work hours of the
institutes every day, on the other hand they were proposed
to be used for solving high performance computation
tasks whenever they are not used for their primary
purpose, i.e. for education, during the nights and the
week-ends.

In September 2002, a preliminary grid test-bed was
installed gathering the “free-cycles” of the PC labs (or
using supercomputing terms PC clusters), which was put
into production after 2 months of testing period in
November, 2002. The initial architecture was referred to
as the first generation of the ClusterGrid infrastructure
(CG).

In May 2003, major revisit over the architecture took
place partly to process and recycle accumulated
experience, and partly to involve new features which were
completely missing from the first generation architecture.
The improved architecture referred to as the second
generation architecture, having been in production since

July, 2003 now involves 1100 interconnected compute
nodes and serves more than 25 scientific projects at the
accumulated computation performance of 400 billion
floating point operations per second.

2 The layered architectural model
Since the PC labs are used for dual purposes, and the

way how they can be used for either is traditionally
different, it is straightforward not to mix, but separate the
two functions from each other over the same hardware as
much as possible. This principle is called spatial and
temporal separation, when spatial separation means using
different operating systems, on different disk partition, in
a different network segment, and temporal separation
means using the PC labs during the day in an office like
environment, and using them as a compute engine during
the nights and week-ends when they would be turned off
anyway.

While the classical grid architectures focus mainly on
the connectivity among super-computational resources
specifically at the application layer, contemporary grid
development principles gradually start to recognize that
many problems emerging from the production grid
requirements cannot be solved only at the application
level, but lower layers, such as computer networking need
to be investigated [1]. The grid architecture used in the
ClusterGrid infrastructure (CG) design corresponds to the
simple model shown in Figure 1.

Fig.1 The grid reference model.

<Paper No.>/2

2.1 The physical layer
The physical layer involves the hardware: PCs and

servers. Each piece of the hardware pool conforms to an
architecture role among the following five basic roles:
• Resource nodes: Resource nodes are compute nodes

which need to be strong machines in terms of CPU
performance, caching and memory.

• Local master nodes: Each cluster of resource nodes
contains a local master node to provide local
services, such as network boot service, network file
system service, or connectivity service. Local
masters may not perform computation at all.

• Service nodes: The purpose of service nodes is
basically to provide fault-tolerant grid-level services
like operating system mirroring, maintenance,
statistics collecting, logging or monitoring.

• Entry nodes: The entry nodes are the user interfaces
in the system.

• Grid job gateway nodes: Job gateways have the
same basic functionality as entry nodes, with the
difference that they are expected to transfer jobs
from/to external grid systems without user
intervention.

2.2 The link layer
The link layer corresponds to the data link layer in the

ISO/OSI networking reference model [2]. In the
contemporary network design it means connecting the
different nodes with special network devices, called
switches.

Separation at this level can be done by using virtual
local area networks (VLAN), or secure networks
satisfying IEEE 802.1q and 802.1x standards. Each
VLAN represents a communication pool in virtual
connectivity within the resource provider institutes.

2.3 The network fabric layer
Introducing a network fabric layer within the grid

middleware was one of the key innovative ideas of CG: in
order to improve secure connection among the different
clusters, they are not connected through the public data
network, but a separated and dedicated communication
channel, called the virtual private network (VPN).

Virtual private networks (VPN) can be implemented
in many ways: One possible implementation is to use
multi-protocol label switching (MPLS) technology by
exploiting the capabilities of the high-quality academic
network [3]. The customer edge (CE) - provider edge
(PE) layout used in MPLS fits perfectly to the grid
network fabric requirements, with the only extension of
connecting the CE and the PE routers with each other via
either intra-institutional VLAN, or via tunneling.

2.4 The operating system layer
Managing just a couple of PCs and administering

several hundreds or thousands of nodes are inherently

different. Different installation, configuration and
maintenance policies are needed to both.

In the CG architecture, Linux is used in general as the
grid operating system (OS), and the compute nodes are
configured as diskless thin-clients to save management
work. By using network root file system, and network
boot procedure the number of OS images to maintain can
be significantly reduced.

2.5 The resource layer
The resource layer basically transfers a bunch of PCs

into a single large computational resource. It encapsulates
both job management utilities, like Condor or SGE, and
library routines that support exploiting the benefits of
parallel processing, e.g. parallel virtual machine (PVM)
or message-passing interface (MPI).

2.6 The grid layer
The grid layer implements abstraction over the cluster

pools, and addresses issues like global job handling,
resource brokering, and global grid information service.
More on the grid layer functions and modules can be
found in the forthcoming section.

2.7 The application layer
The application layer is responsible for the

environment that the users access. The number of tasks
within this layer is extremely large ranging from software
development (graphical parallel software development
environment, distributed make utilities, etc.), compilation,
or in a more complete view the preparation of the
executables, like code optimizing, packaging, and job
management (job submit, job query).

2.8 The general view
Fig.2 shows the general view of the architecture. It is

easy to see that besides the local PC clusters there is a
global entity referred to as the “backbone” of the grid
(GBone) which involves local master nodes, entry nodes
and service nodes connected through the VPN cloud, and
which determines the quality of the grid service. Note that
the quality of the grid service does not tell anything about
the computational performance which is determined by
the compute nodes, but defines the quality of the higher
level software services such as the throughput among
clusters, the guarantee to find the right resource for a
particular job, or security.

3 Innovative elements in the architecture

3.1 The grid resource broker
The grid resource broker used in the ClusterGrid

infrastructure (CG) aims at pursuing a “minimal, but
required by the users” approach and puts special emphasis
on supporting user and job privacy and security.

<Paper No.>/3

Fig.2 The general view of the ClusterGrid Infrastructure project.

The broker implementation is based on a special web-

transaction protocol suite that was designed to include the
following fundamental transaction elements:
• job submission,
• job removal and migration,
• job result and failure propagation,
• resource status inquiry.

The transactions use web POST method over secure

communication channel to transfer communication
messages and data. Hosts mutually authenticate
themselves by using X509 host certificates1.

Since the broker views the local clusters as atomic
resource units, the scope of broker communication is
restricted to the nodes within the grid backbone only. On
one hand the resource and job information is exchanged
between entry nodes and local master nodes, on the other
hand the entry nodes synchronize their information with
one another.

3.2 The user authentication and job identification
In the CG user and job entities are treated separately:

users are authenticated, authorized only on the entry
points of the system, while the jobs execute under
dynamically mapped credentials independent from the
users credentials. The advantage is that no user
authentication is needed on the cluster nodes, nevertheless
the jobs can be traced through the system due to the
dynamic registering. The result is that user identifiers can

1 The X509 based authentication makes the broker useful even

outside the underlying VPN.

easily be determined for local jobs making job migration
among the different resources flexible.

The user authentication database can either be local,
using classic password file, local information service, or
global, integrated, external LDAP system depending on
the user management policy. For example in the case of
CG entry nodes a high-availability clustered, distributed
directory server system provides the user database and the
authentication service.

Since user identifiers exist on the entry nodes only,
when the broker takes over a submitted user job and
prepares it to execute on one of the clusters, the broker
assigns a globally unique job identifier to the job, and
maps it to local cluster credentials before execution. Thus
the jobs, even those which were submitted by the same
user, execute under different local credentials, preventing
“malicious jobs” to access unauthorized data from other
jobs. The local credential assignment is stored in a
database backend, and managed by a special application
called IDregister [7], dynamically.

3.3 The “job-dir” execution format
In traditional grid systems a job is usually defined as a

statically linked executable equipped with input and
parameter files. In the practice this single-file approach
has proved to be too restrictive, since users may wish to
transfer not only the executables, but license files,
dynamic libraries, temporary files, or even the source of
the code to exploit the strength of a cluster during the
compilation. These demands which are not addressed in
the case of clusters, due to the mandatory uniform file
system representation used, have led to the formulation of

<Paper No.>/4

the “one job-one directory structure” mapping (or briefly
to the “job-dir” format). As a historical remark, treating a
task as a directory structure is not a novel approach; early
implementations of the OpenStep standard (Next,
GNUStep) also applied directories for treating
environmental resources of the different applications [6].

A job-dir basically defines a static framework to how
the user application appears in the file system. A job
directory encapsulates all the environment elements
needed to execute the jobs remotely, such as binaries
(either in statically or dynamically linked formats),
necessary libraries in the appropriate version, license
files, environment variables, digital signatures to enable
data protection, etc. The job directory, as an atomic unit,
also allows defining operations over jobs, like job start,
job finish, job transfer, job removal, or more complex
operations, like execution sequence definition
(workflow), children-jobs within a parent job, etc. A
sample job directory can be seen in Fig.3.

Fig.3 A sample job in “job-directory” format. Solid
ovals represent mandatory subdirectories, dotted ovals

optional ones. The submit text file describes properties of
the job.

By using “job-directory” format the most sensitive

parts of the job in terms of privacy can be encrypted and
can be decoded on specific nodes or clusters only. In this
way, the grid resources can be segmented to involve user
groups on the same infrastructure who are working on the
same research topic, or simply rely on each other’s
infrastructure. If the segmentation capability is extended
over all types of grid services, virtual organization can be
created.

3.4 External interfacing
As the grid is fundamentally a collaboration tool, it is

of high importance to allow CG to be interoperable with
those grid systems which are built on different principles
like Globus grid, or Large Headron’s Collider (LHC)
grid. Since in the CG architecture design the jobs are

defined as static and dynamic entities, and there are job
operations defined over them, it is straightforward to
implement these operations on a standard web-service
interface, such as Simple Object Access Protocol
(SOAP).

4 The grid in operation

4.1 Organization structure
To build a production grid, the motivations of

different role-players need to be clarified: It was a
reinforced experience throughout the CG development,
that cooperation as a driving force of interest among the
different partners is not enough to have and a much more
organic structure among the role-players is necessary. For
example, the user community and the resource provider
community can be quite different with totally different
motivations, and those who have the valuable
computational resources do not necessarily want to use
them.

When talking about a production grid service, the
following participant roles can be identified:
• grid user: a person or an institute who is structurally

compute power consumer,
• resource provider: an institute who offers its

compute resources into for common pool, and is
basically motivated in getting money for his
offering,

• grid service provider: a special institute who plays
the role of the resource coordinator, gathers and re-
distributes local clusters for the user community
extending them with extra services like support,
coordination over the large common pool, etc.

The former grid roles anticipate a 2-layered model, in

which the users take services provided by the grid service
providers, grid service providers take, or buy the raw
resources from resource providers, and there is no direct
connection between the users and the resource providers.
The 2-layered model can be used for formulating a semi-
market organizational structure, in which the grid service
providers can be centrally financed institutes at the
beginning, and as the compute resource demand gradually
increases, at the same time industrial and business users
start to discover and start to use the computational
facilities, the financing model can be gradually shifted
from central-budget financing to a purely market-based
model. Thus, on the long run, the resource market
involving resource providers and resource consumers may
evolve.

4.2 Monitoring
Monitoring is a cross-section module in the grid

reference model, spans over multiple layers providing
relevant information on the appropriate operation in real-
time.

<Paper No.>/5

Fig.4 Provincial “weather-map” of the Hungarian ClusterGrid Infrastructure. The spots mark the locations of different

clusters; the x/y numbers represent the currently operational nodes with respect to the total number of nodes in a
particular cluster. (There are detailed maps for some towns as well.)

Fig.5 The user cycle that illustrates the process what a user typically does in the system after getting into the entry
nodes.

<Paper No.>/6

Monitoring helps forecasting errors, finding and repairing
malfunctioning components and measuring the overall
usability and performance of the system.

In the CG project an open-source monitoring system,
MON [5] is used for supervising various aspects of the
grid: running services, system utilization, network
utilization, free disk space, CPU accounting, availability
of resources, etc.

For storing the CPU accounting information RRD
database is used. RRD implements high quality data
storage, and is also redundant against missed database
updates without explicit user-level coding.

Monitoring is supported by graphical tools such as
“weather-maps” well-known from network traffic
representation tools [7]. Fig.4 shows part of the CG.

4.3 The users’ cycle
CG currently supports two classes of user jobs:

parameter scanning tasks, and tasks parallelized with
PVM library. A user may opt between two access
interfaces on entry nodes: a web-portal interface [4] and a
command line interface (CLI). By using either, he gets
through the sub-processes of the user cycle represented in
Fig.5.

The very first step to solve an application problem is
to have an algorithm that is capable of exploiting the
distributed grid environment, and to have an
implementation of it preferably in C, C++ or Fortran. The
code itself can either be a self-developed application, by
using development tools such as P-Grade [8], or an
application most commonly used in the specific scientific
research field.

The next step is the porting which basically means to
compile and optimize the source code in the Linux
environment. Porting is a tedious manual task for those
applications which were developed for a different
architecture and it needs lots of experience. To make the
job to be capable to checkpoint and migrate, sequential
checkpoint libraries are used in the case of serial
applications, and user-level checkpoint methods are used
in the case of parallel applications.

Having compiled the binary executables, the user
copies the job execution environment to the entry node,
and then, configures a job in the job-dir format.

Properly prepared jobs are then submitted into the
grid, where the resource broker finds the appropriate
cluster for them. The broker transfers the job environment
to the execution cluster, and resubmits it into the local job
manager. Whenever the users want, typically when the
job is completed, but not necessarily, the results are
explicitly drawn from the execution cluster to the entry
point, and then the user may analyze the execution results.

The whole cycle then repeats either from the job re-
execution, or from the application development.

5 Conclusions
Implementing a production grid is a tedious task, but

is an elementary requirement not only inside of Europe,
but all over the world. It is getting more and more

important to put the results of fundamental grid (and
related infrastructure) research into production to provide
appropriate feed-back about the real users’ real demands
to the grid research.

Either as a research field or as an infrastructure
development challenge, the area faces a great perspective:
there are a lot of questions need to be addressed, a lot of
problems to be solved, and a lot of users to be served.

Using virtual private computer networking, revised
job structuring, dynamic execution environment mapping,
intelligent, distributed, and web-service based resource
brokering are some of the contributions that have been
developed during the ClusterGrid Infrastructure project.

Although the infrastructure and grid architecture
presented in this paper is available as a service, it is far
from being ready both in terms of size and
implementation quality. Utilizing storage chunks,
processing and aggregating grid information to aid
brokering, making the solution generally applicable to a
wider range of operation systems, enhancing the
combined nature of the computation facilities providing
interoperable and distributed facilities are just some of the
mainstream of the development directions.

6 Acknowledgements
The authors would like to express their gratitude to the

ClusterGrid development community (the former
Technical Board) involving the members of the
Hungarian grid community and representatives of the
Hungarian Grid Competence Center: István Botka, István
Farkas, Gábor Gombás, Péter Halász, Zoltán Kalmár,
Bence Kiss and Imre Szeberényi.

The work and moral support of NIIF/HUNGARNET
colleagues, namely Lajos Bálint and Miklós Nagy is also
highly appreciated.

References
[1] Foster, I., Gannon, D., Kishimoto, H.: Open Grid Service

Architecture, 2003,
http://www.globus.org/research/papers/ogsa.pdf

[2] The ISO/OSI Reference Model, ISO/IEC10026,
http://en.wikipedia.org/wiki/List_of_ISO_standards

[3] Rosen, E., Rekhter, Y.: BGP/MPLS VPNs, RFC2547,
1999, http://www.ietf.org

[4] The GridSphere project, 2003, http://www.gridsphere.org

[5] MON, Service Monitoring Daemon, 2003,
http://www.kernel.org/software/mon/

[6] The GNU OpenStep project specification, 1994,
http://www.gnustep.org

[7] The ClusterGrid Infrastructure homepage:
http://www.clustergrid.iif.hu

[8] The P-Grade Development Tool:
http://www.lpds.sztaki.hu

