
246 1

  
Abstract—The goal of the Saleve Project is to develop and 

evaluate mechanisms and abstractions that may connect the 
diverse research community of the distributed (mainly the Grid) 
computing to those users, who are not familiar with distributed 
computing as such, but who would simply like to use the results 
in their everyday tasks. We show a simple web-services based, 
domain-specific computational framework that integrates 
smoothly into the well-known, traditional user environments and 
requires learning no new technologies. 
 

Index Terms—Parameter Study Applications, Web Services, 
Computational Grid  
 

I. INTRODUCTION 
HE distributed computing paradigm, and the researches 
carried out to exploit its benefits have become one of the 
most exciting and supported computing challenges in the 

past decade. The prolific, not compatible, different tools, 
methods and approaches demanded to invent and create 
common platforms and standards. However, those “standards” 
themselves have been subject to rapid development and 
changes. The tools implementing them are also changing 
frequently; therefore users must adapt the applications and the 
environment built on top of them with almost the same 
frequency. It is generally a heavy burden. Saleve [1] intends to 
ease the situation by hiding the technological details from the 
end-user, and provides a generic, lightweight, instantly usable 
solution for the well-specified problem domain of the 
parameter study (or sweep - PS) tasks on top of the present 
distributed technologies. Roughly, a PS task involves a 
domain (parameter space) and an operation that “sweeps” 
over the domain to produce the desired result. The domain 
may be divided into sub-domains and the operation can be 
executed independently on them, that yields the base of the 
distribution of the computation. PS tasks cover a wide range 
 

Manuscript received June 6, 2005. This work was supported by NKFP 
grant 2/009/2004, IKTA grant 00064/2003 Hungarian and INFSO-50883 
(EGEE) EU funds.  

Zs. M. Author is with the Budapest University of Technology and 
Economics, Tapiontie 6B 26, Oulu, 90570, Finland (phone: +358 40 702 
0663; e-mail: zsolt.molnar@ieee.org).  

I. Sz. Author is with the Budapest University of Technology and 
Economics, Budapest, 1111, Muegyetem rkp. 3-9, Hungary (e-mail: 
szebi@iit.bme.hu). 

of technical and scientific research activities. Extremely 
complicated PS tasks are involved in high energy physics, 
astronomy, cosmology data analysis, data aggregation, etc. 
Fortunately, the PS tasks share a simple, common structure in 
the distributed computing context.  

The most emerging distributed computing paradigm, the 
Grid [2] concept, introduced the Grid portals as the central 
entry points for the Grid services. They are mostly web based 
(like GridSphere [3]); the portal user can create new services 
in well-defined ways, submit and monitor jobs, etc. However, 
this kind of environment usually cannot interact smoothly 
with the older, well-tested tools. Saleve attempts to bridge this 
gap as well. 

First of all, let us review the relationship to some related 
projects emphasizing the major differences only. The most 
similar project is AppLeS [4]. AppLeS also intends to 
simplify and automate the PS task distribution. While AppLeS 
focuses on its own scheduling methods, Saleve relies 
completely on third-party schedulers (that are completely 
hidden from the end-user). The second main difference is the 
communication method: AppLeS uses ssh, Saleve uses DIME-
enabled [5] web services to ease the smooth integration into 
the grid portal settings. The third main difference can be 
observed in the account and credential handling. Using the ssh 
method, the user must have real, personal account on the 
server machine that makes group-wise activities and access 
sharing difficult. Saleve approaches the problem by providing 
a virtual “user” entity to the computing resource that may be 
shared further among the real clients. 

The following projects may be regarded as one group: 
Nimrod [6], Condor [7], ClusterGrid [8], BOINC [9], and 
Globus [10]. Saleve is built on top of them; in fact they 
represent those third party schedulers. Generally, the user 
must create explicit task descriptor files, and/or either a 
special toolset must be available on the user’s desktop or the 
user must log in directly to the executing resource. Saleve 
eliminates both requirements: the task description constitutes a 
natural part of the user’s application program, therefore it is 
written in the user’s convenient and well-known language. 
The executing “tool” is also part of the program, the 
application knows how and where to execute itself. No special 
client-side runtime environment is needed. 

We expect that our approach speeds up the PS application 
development and execution, and deepens the cooperation 

Saleve: Simple Web-Services Based 
Environment for Parameter Study Applications 

 Zsolt Molnár Imre Szeberényi 
 

T 



246 2

between the members of smaller and geographically 
distributed research groups.  

 

II. PROPERTIES OF SALEVE 

A. Structure and Behavior. 
ALEVE has client-server architecture. The client provides 
the entire set of executable and data files, the server 
renders and directs them further to the underlying 

distributed system (Fig. 1.).  
The client side workstation is the location of the application 

development. We assume that the developer is less familiar 
with distributed technologies. The developer creates the 
calculation by using the Saleve client library and his/her 
programming language constructs. Inside the program, the 
developer registers those resources that are required to execute 
the task. For the moment, the resources are input/output and 
executable files. Only the registered resources are transferred 
to the server, and back to the user. Then the parameter space 
partitioning must be executed. The way of the partitioning is 
arbitrary: it may be embedded into the application; it may be 
based on user-defined description files, etc. Optional client-
side command line parameters may be defined as well, 
therefore Saleve has only small impact on the interface 
between the user and his/her own system. 

After those modifications, the produced executable itself 
becomes the Saleve client. It is responsible for handling its 
own resources and implements automatically the required 
communication with the server. 

A Saleve client may run in two, local or remote modes. In 
local mode, all parts of the calculation are executed on the 
launching node, no Saleve server is involved - the client 
behaves like a traditional application. But the Saleve client 
library provides a little more: If the local machine is a 
multiprocessor system, then it is able to launch more partial 
calculation instances at the same time! So a Saleve client 
application is automatically a multiprocessor application.  

We introduced this mode in order to ease testing and 
application development. Only final products should be 
submitted to the computing servers; testing, optimization and 
fine-tuning should be performed locally. When the user runs 
the program in remote mode, the sequential execution of the 
partial calculations turns into (optimized) data transfers using 
web services technology. We refer to this method as a 
virtually sequential execution of a parallel task. The remote 
Saleve server receives the material, submits it to a cycle 
service, and transfers back the results.  

To run the application remotely, the URL of a Saleve server 
must be provided. The URL may point to a real Saleve server 
or a dispatcher service giving the same Saleve interface like a 
real Saleve server. Based on the application, load, platform, 
etc. requirements, the task may be transferred to other Saleve 
servers by the dispatcher. The reference implementation 
provides such a transferring server. 

On the local machine, the (virtual) calculation is over when 
all the partial results arrived (independently form their way of 
producing). The post-processing is then performed locally 

again. The distributed system is completely hidden behind the 
Saleve server: once a new technology appears, and an 
adapting Saleve server is set up, the user can run the 
calculation using that technology immediately, without any 
modifications/recompilations on his/her side. 

 

 
Fig. 1. Structure of Saleve 

 
 All the client (application developer) side functionality can 

be accessed from application development languages. For the 
moment, C and C++ are supported, but with tools like f2c of 
g77 [11], FORTRAN may easily be used as well. It means that 
if the user can access and modify the source code of a 
traditional application, then he/she may easily turn it into a 
distributed one. Explicit task-distributing constructs (like 
computing nodes, job submitting, remote procedure calls, etc.) 
are hidden from the user. Fig. 2. contains a simple code 
snippet where all the Saleve C language constructs are shown 
up.  

 

S 



246 3

 
Fig. 2. Saleve C language constructs 
 
An important problem arises when the application would 

use some shared libraries. Saleve cannot ensure that the 
required libraries, versions, etc. be present on the executing 
nodes. Therefore, the shared code should also have to be 
submitted in a way. Saleve does not provide support for this 
part, but in most cases statically linked binaries work well. 
When working with Saleve, all the libraries should be linked 
statically to the executables. 

B.  Communication  
The communication between the client and the server is 

implemented by using the web services technology, based on 
SOAP [12]. Selecting it has some obvious reasons: it is a de 
facto standard in the Grid service development community, it 
uses (optionally secure) HTTP protocol (that is supported by 
almost every networked computer), and it is supported by 
more and more stable and well-tested tools. It provides 
interoperability across institutional and application language 
boundaries; the client has to assume nothing about the 
implementation details of the server (and vice versa). The 
SOAP based communication in the reference implementation 
was developed by using gSOAP [13]. gSOAP does not require 
any pre-installed runtime environment. Using the WSDL [14] 
description of the Saleve service, it generates stub and 
skeleton codes in ANSI C/C++. Therefore, the whole 
communication subsystem is generated in source code level, 
and it is fully integrated into the client library. The major 
consequence is that an arbitrarily implemented Saleve client 
can interact with an arbitrarily implemented Saleve server by 
using only the basic and traditional HTTP communication 
without the burden of developing and maintaining any custom 
protocol and client-side runtime environment.  

During a Saleve process, the reliable transfer of big binary 

files is mandatory. gSOAP provides stable DIME attachment 
handling, that supports even arrays or structures of binary 
files.  

C. Fault tolerance.  
In remote mode, networked communication occurs between 

the client application and the remote server. The networked 
communication frequently suffers from interruptions and other 
uncontrollable error situations. On the other hand, the mobility 
of the computers and networked devices is a demand today – 
causing unavoidable network services cut from time to time. 
The Grid portals would provide a solution for this problem as 
the interface and job execution is remote, only the handler 
device is local. Saleve must provide the same capability. After 
the communication subsystem finished the transferring of the 
job data (files, etc.), the execution switches to polling mode: it 
checks regularly the state of the job, and retrieves the ready 
partial results. If the file retrieval fails, then the system restarts 
it later. This mode can be interrupted (either by the user or by 
the network), and resumed later. Network problems are 
reported by the client, but the virtual execution does not stop 
in this case. Each Saleve client has proper and uniform 
command line interface to re-attach to an interrupted job, 
because the state of a running job is controlled and tracked by 
the remote Saleve server.  

Another question is the case of the server side fault. If the 
underlying service fails, Saleve reports it to the client that may 
warn the user. If the Saleve server fails, the client interrupts 
the execution when timeout occurs. Time to time, the server 
saves the task state. By using this checkpoint, the server is 
able to resume the task, independently from the origin of 
failure. The user may re-attach the client to the task at any 
time, from even different locations. The task state and data is 
cleaned up only when task termination is explicitly called 
from the client. 

D. Job and User Administration, Access Control 
The basic authentication system of Saleve is the HTTP 

authentication. Based on this, the remote Saleve server either 
determines the access rights of the user itself, or maps it to the 
credential handling system of the underlying job manager (by 
using authentication plugins, see later). A Saleve client 
always asks for password before the first communication 
attempt with a remote Saleve server. Users may store their 
user name and password in encrypted files as well. The reason 
of choosing HTTP authentication is the fact that most front-
end desktops support this. That seems to be sufficient for user 
identification. The centrally managed Saleve server uses more 
elaborate access controlling methods on behalf of the user, 
making certificates toward the real resources better protected. 

Saleve provides client side tools for user management, job 
control and job monitoring as well. All the required 
functionalities are implemented in the Saleve client side 
library, so they are available by using each Saleve client. The 
user may run an arbitrary Saleve client program with 
command line parameters to execute an administration task. 
The user has his calculation and administration tools built in 
one executable making the work with Saleve extremely 
powerful and location independent 



246 4

E. Saleve Server Capabilities.  
The Saleve server also has multiple roles and tasks. First of 

all, it centralizes the management of the distributed system: if 
the system changes, only the Saleve server has to be changed, 
the applications can be used without any modification. It also 
represents a service consumer to the Grid (in case of the Grid 
based implementation). As the Saleve server is only one entity 
from the viewpoint of the Grid, only simple access policy has 
to be set up and maintained. The Grid administrators know 
that Saleve uses the resources only in a well defined way, for 
a well-defined task type – they could provide better, optimized 
scheduling (for instance by using AppLeS). 

F. Plugins.  
To adapt the new or changed technologies faster and more 

easily, the Saleve server project provides a framework 
implementing the most common functionalities. The 
technologies are linked to the server by plugins. Adapter 
(submission), authentication and file handling plugins must be 
provided. 

G. Reference implementation.  
The reference server was written in C++, by using gSOAP. 

It may work in two modes: daemon and CGI modes. In 
daemon mode, a listening port must be given as a parameter.  

The reference implementation provides two authentication 
plugins. The first one provides basic services only: it stores 
encrypted user name/password pairs locally. This plugin is 
suitable for those distributed systems that have no intrinsic 
user management and access control capabilities. The second 
one is suitable for Grid systems. It allows Saleve to download 
Grid certificates (proxy credentials) from a MyProxy [15] 
server. The users of Saleve do not have to obtain a valid 
certificate, only the Saleve administrator has to do it once. 

There are four adapter plugins ready. The first one is 
valuable for local multiprocessor (supercomputer) systems. 
This is the simplest case. There is no other distributed 
technology behind; it is the most simple, stand-alone 
scheduler, enabling remote job execution on a 
(super)computer. Its main purpose is to provide test or dummy 
Saleve servers.  The supported production systems are the 
following: Condor, Globus, ClusterGrid. We are planning to 
develop more plugins (BOINC, gLite [16], BirdBath [17]) that 
may make the underlying systems directly comparable. 

III. SELECTED PROBLEMS SOLVED WITH SALEVE 
ALEVE system was evaluated and tested by adapting and 
executing complicated high energy physics applications, 
like Event2 [18] and NLOJET++ [19]. We reproduced 

easily and effectively those results that were published in [20]. 
At the current state of the project we started to demonstrate 
the development simplicity and speed with a quite new 
application that makes global parameter scanning for solving 
boundary value problems using PHA algorithm [21]. 

IV. GRID PORTALS AND THE FUTURE 
N important property of the Saleve client applications is 
that they can be turned into portal services immediately, 

by using traditional methods. The data of the parameter space 
distribution can be produced by simple portlets, designed 
specially for the application. The output of a Saleve client is 
always well-defined, therefore it can be directed to other 
portlets that may understand, visualize and analyze it further. 
The application with an URL pointing to a Saleve server 
constitutes one calculating entity with a well-defined task that 
knows where and how to execute itself. A Saleve client, 
created by a scientist not knowing much about the distributed 
technologies, becomes a powerful Grid portal service – that 
was the leading vision of the Saleve project. 

 

REFERENCES 
[1] Saleve Project home page, http://gcsaleve.sourceforge.net 
[2] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, ”The Physiology of the 

Grid An Open Grid Services Architecture for Distributed Systems 
Integration,” Open Grid Service Infrastructure WG, Global Grid Forum, 
June 22, 2002., 
http://www.globus.org/alliance/publications/papers/ogsa.pdf 

[3] GridShere homepage, http://www.Gridsphere.org 
[4] AppLeS Home Page, http://grail.sdsc.edu/projects/apst/ 
[5] Direct Internet Message Encapsulation (DIME), June 17, 2002., 

http://msdn.microsoft.com/library/en-us/dnglobspec/ html/draft-nielsen-
dime-02.txt 

[6] Nimrod Home Page, 
http://www.csse.monash.edu.au/~davida/nimrod.html/  

[7] Condor Project Home Page, http://www.cs.wisc.edu/condor/ 
[8] The Hungarian ClusterGrid Infrastructure project, home page, 

http://www.clusterGrid.hu/ 
[9] BOINC Home Page, http://boinc.berkeley.edu/ 
[10] Globus Team, Globus Toolkit, http://www.globus.org 
[11] g77 Home Page, http://world.std.com/~burley/g77.html  
[12] SOAP Version 1.2, W3C Recommendation 24 June 2003., 

http://www.w3.org/TR/soap12 
[13] gSOAP home page, http://gsoap2.sourceforge.net/ 
[14] Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 

2001., http://www.w3.org/TR/wsdl 
[15] J. Novotny, S. Tuecke, V. Welch, “An Online Credential Repository for 

the Grid: MyProxy,” Proceedings of the 10th IEEE Intl. Symp. on High 
Performance Distributed Computing, 2001. 

[16] gLite Home Page, http://glite.web.cern.ch/glite/  
[17] BirdBath Home Page http://www.cs.wisc.edu/condor/birdbath/ 
[18] Home page of Event2, http://hepwww.rl.ac.uk/theory/seymour/nlo/ 
[19] Home page of NLOJET++, http://www.cpt.dur.ac.uk/~nagyz/nlo++-v2/ 
[20] Z. Nagy, Z. Trocsanyi, “Multi-jet cross sections in deep inelastic 

scattering at next-to-leading order,” Phys.Rev.Lett. 87 (2001),  082001 
[21] G.Domokos, I.Szeberényi, ”A hybrid parallel approach to one-parameter 

nonlinear boundary value problems,” Computer Assisted Mechanics and 
Engieneering Sciences, 11:15-34, 2004. 

 

S 

A 

http://gcsaleve.sourceforge.net/
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.gridsphere.org/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt
http://msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt
http://www.clustergrid.hu/
http://www.globus.org/
http://www.w3.org/TR/soap12
http://gsoap2.sourceforge.net/
http://www.w3.org/TR/wsdl
http://hepwww.rl.ac.uk/theory/seymour/nlo/
http://www.cpt.dur.ac.uk/~nagyz/nlo++-v1/

